

Exploring the Features of the New EPI SuiteTM Web Models and Applicability Domains Relevant to Environmental Toxicological Risk Assessment

Mary Kawa^a, Lauren Cassidy^a, Laura Morlacci^a, Wen-Hsiung Lee^b ^aSRC Inc.; ^bU.S. Environmental Protection Agency Office of Pollution Prevention and Toxics (OPPT)

ABSTRACT

Module specific enhancements were made to the U.S. Environmental Protection Agency's (EPA) EPI Suite[™] graphical user interface (GUI) to facilitate evaluation of each model's domain of applicability and provide data for read-across or analogue selection. The incorporation of Analog Identification Methodology (AIM) fragments is especially important as it allows users to see the robustness of a given estimation model based on the available data sets. By displaying analogues in conjunction with fragment counts, the model user can bridge the uncertainty gap for data-poor chemicals. These updates were made under guidance by the EPA's Office of Pollution Prevention and Toxics (OPPT) which regulates both new and existing industrial chemicals under the Toxic Substances Control Act (TSCA), as amended by the Frank R. Lautenberg Chemical Safety for the 21st Century Act. Given the large number of chemicals submitted each year for PMN evaluation, EPI Suite™ is one of the key programs used to assist in developing assessments of the hazards and risks of these materials under time constraints. Now, with the newly deployed web version of this software package under development, scientists can convey the logic and rationale of the modeled results and applicability domain considerations with a simple approach.

APPLICABILITY DOMAINS

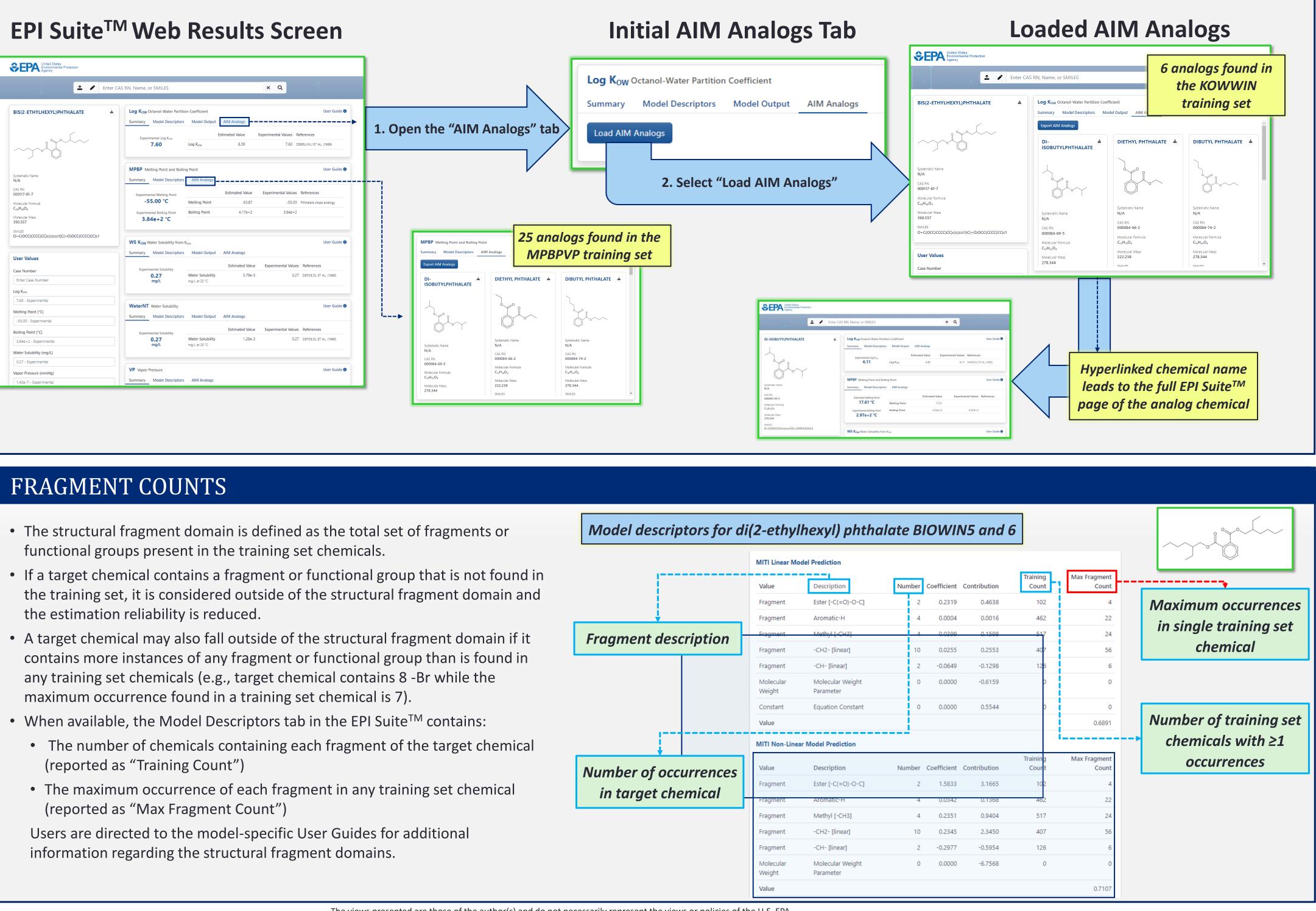
When estimating chemical properties using a quantitative structure-activity relationship (QSAR) model, the target chemical's suitability with the model must be evaluated. To aid in this evaluation, applicability domains (AD) are reported for many of the models in EPI Suite[™]. The AD of a QSAR model is the "response and chemical structure space in which the model makes predictions with a given reliability"¹. Property estimations for target chemicals that are outside of the defined AD for a model are normally considered unreliable and are likely not suitable for regulatory decision-making² In practice, ADs are defined using a combination of several criteria.

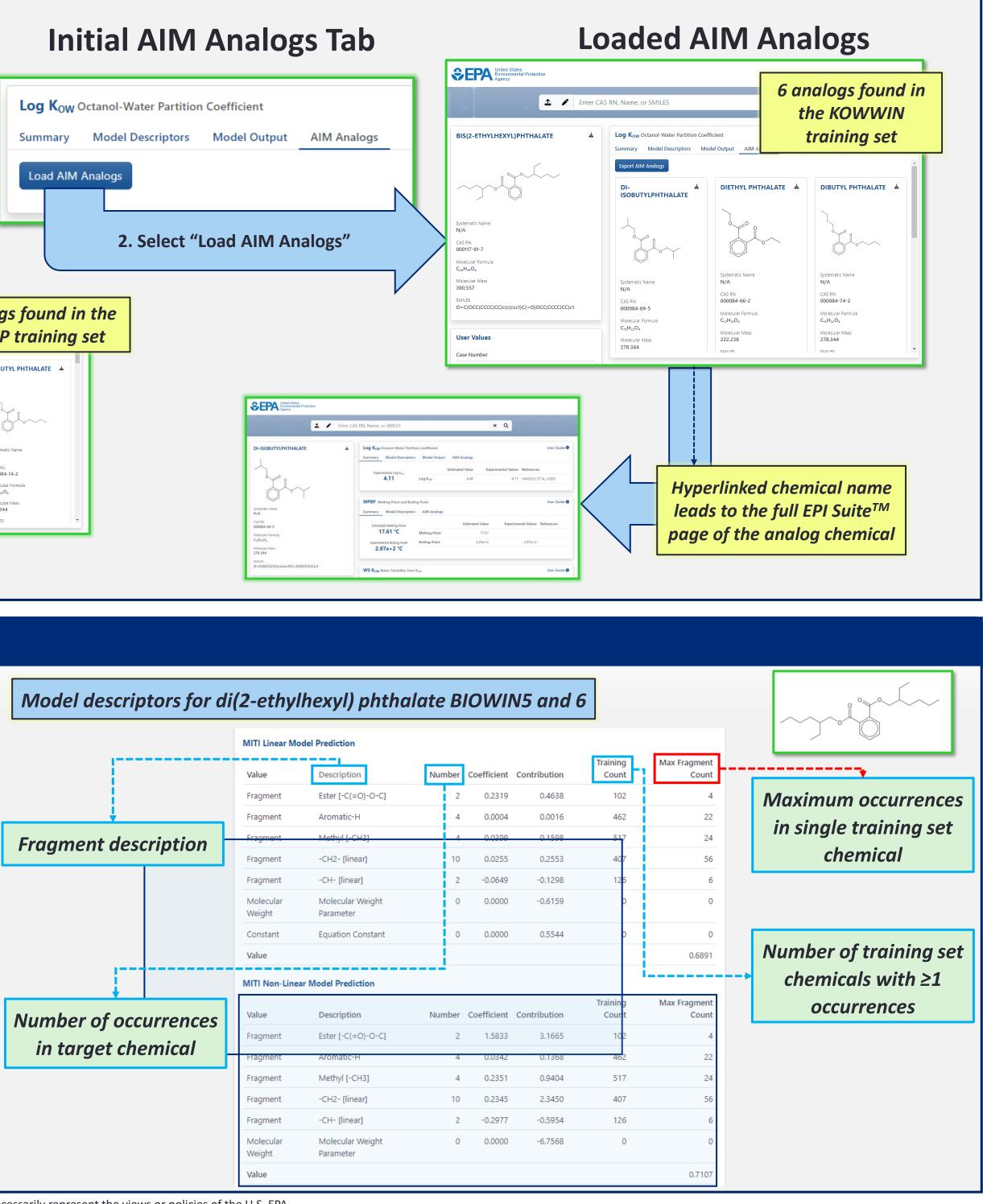
¹OECD, 2007. Guidance document on the validation of (quantitative)structure-activity relationship [(Q)SAR] models.; Organisation for Economic Cooperation and Development. Paris. ²Papa, E.; Sangion, A.; Arnot, J. 2018. Approaches to enhance the evaluation of the EPI Suite model(s) BCFBAF applicability domain.

GLOBAL APPLICABILITY DOMAINS

Global applicability domains establish the upper and lower bounds of a model's reliability based on a range of descriptors or responses for training set chemicals. Descriptors for the BCFBAF module include molecular weight and K_{ow}. Estimations for chemicals with a molecular weight or K_{ow} inside the range established by the training set are considered more reliable. The response global applicability domain is established by the range of experimental values present in the training set. If an estimated value is inside the range of measured values in the training set, the estimation is considered more reliable. These global domains, as well as any other applicability domain, are described in the User Guides for each module.

		Training Set (527 Compound	ds) Molecular V	Veight Chemicals
User Guide	BCFBAF™ User's Guide	Minimum MW	68.08	Furan
contents for	1. <u>Introduction</u> 2. <u>Results</u> 1. <u>Bioconcentration Factor (BCE)</u>	Maximum MW	991.80	lonic 2,7-Naphthalenedisulfonic acid 4-amino-5-hydroxy-3,6-bis[[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]azo]- tetrasodium salt
BCFBAF	1. <u>Estimation Methodology</u> 2. Estimation Accuracy	Maximum MW	959.17	Non-Ionic Benzene, 1,1 -oxybis[2,3,4,5,6-pentabromo-
module	3. Estimation Domain	Average MW	244.00	
module	2. <u>Biotransformation Rate in Fish (kM)</u> 1. <u>Estimation Methodology</u>	Training Set (527 Compound	ds) Log Kow	Chemicals
	2. <u>Estimation Accuracy</u> 3. <u>Estimation Domain</u> 3. <u>Arnot-Gobas BAF-BCF</u> 1. Estimation Methodology	Minimum LogKow	-6.50	lonic 2,7-Naphthalenedisulfonic acid 4-amino-5-hydroxy-3,6-bis[[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]azo]- tetrasodium salt
	2. <u>Other Considerations in Using Arnot-Gobas BAF-BCF</u> 3. References	Minimum LogKow	-1.37	Non-Ionic 1,3,5-Triazine-2,4,6-triamine
	Appendix A - Selected SMILES Information	Maximum LogKow	11.26	Benzenamine, ar-octyl-N-(octylphenyl)-
	 Appendix A - Selected SMILLS monitoring Appendix C - BCF Non-Ionic Correction Factors Used by BCFBAF Appendix D - kM Biotransformation Fragments & Coefficient Values Appendix E - BCF Estimation Method Training Datasets Appendix F - BCF Estimation Method Validation Dataset Appendix G - kM Biotransformation Estimation Training Dataset Appendix H - kM Biotransformation Estimation Validation Dataset Appendix H - kM Biotransformation Estimation Validation Dataset Appendix H - kM Biotransformation Estimation Validation Dataset Appendix I - Arnot-Gobas BAF/BCF Model - Program Code Used by BCFBAF 	S		ry of global descriptor mains for BCFWIN


ANALOG IDENTIFICATION


• AIM Analogs tabs have been added to the following EPI Suite[™] modules, enabling users to quickly search the following training sets for analogs of the target chemical:

- KOWWINTM
- HENRYWINTM
- MPBPVPTM
- WSKOWWIN[™]
- WATERNTTM

- BIOHCWINTM
- AEROWINTM
- AOPWINTM
- KOCWINTM

- HYDROWINTM
- BCFBAFTM
- WVOLWINTM
- STPWIN[™]
- LEV3EPI[™]
- DERMWIN[™]

The inclusion of multiple target chemical analogs in the training set indicates that the target chemical estimation is more reliable.

• EPI SuiteTM results of the analogs can be run by clicking on the hyperlinked chemical name. This allows the user to quickly assess the estimation accuracy of the analog chemical against its experimental value, providing information about the model's estimation accuracy for chemicals in chemical space surrounding the target chemical.

• AIM is a software tool available at: https://www.epa.gov/tsca-screening-tools/analogidentification-methodology-aim-tool