

Hazard Classification Best Practices to Support a Sustainable Chemical Portfolio

Ari S. Lewis, M.S., Gradient Scott Sieber, M.S., Abbott Laboratories

Society for Chemical Hazard Communication 2025 Annual Meeting September 24, 2025

Take Homes

- Conducting accurate hazard assessments is essential for compliance, safety, and general stewardship
- Ahazard assessment you can stand by can be difficult and resource intensive
- Many resources are out there for getting toxicity information to inform assessment
- Proper documentation is key
- Toxicity information is evolving, and periodic updates are important
- New hazard classes under the European Union (EU) Classification, Labelling, and Packaging (CLP) Regulation may pose unique challenges

Outline

- Why are hazard assessments important?
- Recap from last year
- Strategies for conducting sound hazard assessment
- Gold standard assessments
- New CLP hazard class case study

Why Are Hazard Assessments Important?

- Compliance requirement
- Protect workers
- Needed in case of accident/spill
- Protect against litigation claims
- Know your vulnerabilities
- Build more sustainable chemical program
- Merger preparation

Safety Data Sheets (SDSs) Not Reliable

- Often conflicting info
 - Hazards do not match toxicity data
- Lack of info
 - Hazard without toxicity data
- No hazard
 - No hazard or no data?

Complex supply chain: a SDS is only as strong as weakest link

Many Resources Available to Evaluate Hazard

PubChem

https://pubchem.ncbi.nlm.nih.gov/

US EPA CompTox Chemicals Database

https://comptox.epa.gov/dashboard/

ToxPlanet

 https://www.enhesa.com/sustainablechemistry/our solutions/toxplanet/

ECHA Registration Dossiers

https://echa.europa.eu/informationon-chemicals

Agency for Toxic Substances and Disease Registry (ATSDR)

https://www.atsdr.cdc.gov/toxprofiledocs/index.html

US EPA Integrated Risk Information System (IRIS) Assessments

https://www.epa.gov/iris

US EPA Reregistration Eligibility Decision (RED) Assessments

https://ordspub.epa.gov/ords/pesticides/f?p=chemicalsearch:1

US EPA ECOTOX

https://cfpub.epa.gov/ecotox/

OECD Screening Information Data Set (SIDS) Reports

https://hpvchemicals.oecd.org/ui/Default.aspx#Published_OECD_ Assessments

International Agency for Research on Cancer (IARC) Monographs

https://monographs.iarc.who.int/

National Toxicology Program (NTP) Study Reports

https://ntp.niehs.nih.gov/publications/reports

Joint FAO/WHO Expert Committee on Food Additives (JECFA)

https://apps.who.int/food-additives-contaminants-jecfa-database/

Human and Environmental Risk Assessment (HERA) Reports

https://www.heraproject.com/RiskAssessment.cfm

Scientific Committee on Consumer Safety (SCCS)

https://health.ec.europa.eu/scientificommittees/scientificommittee-consumersafety-sccs en

Cosmetic Ingredient Review (CIR)

https://www.cir-safety.org/

Why Is Assigning Hazards So Complex?

- Supplier information may differ (rightly or "wrongly")
- Difficult to distinguish between no hazard, no data, not assessed, and assessed but unable to reach reliable conclusion
- Reliance on publicly available sources vs.proprietary data
- Use of readacross (surrogate)
- Authoritative hazard assignments
 - Inconsistencies among countries
 - Inconsistencies with available data
 - Differences over time
- EXPERT JUDGMENT

Understanding Resources

Overall Guiding Principals

- Hazard assessment should be sufficiently detailed to support a hazard conclusion, but will need to balance available resources
- ALL hazard summaries should have a clear weight-of-evidence statement
- To improve consistency among complex evaluations and among staff, it is useful to develop a classification criteria protocol
- If chemical-specific data are not available, an attempt should be made to identify an appropriate chemical surrogate (*i.e.*,"read-across")
- Document references
- Understand confidence in conclusions
- Schedule updates
- Database preferable over spreadsheet

Approach for Data-Rich Chemicals

- Data-rich chemicals have often been reviewed by authoritative agencies
 - Summarize conclusions
 - EFSA, SCCS, TSCA HPVs, IARC, NTC, OECD, etc.
 - Pay attention to date of publication
- For chemicals with data but no authoritative evaluation:
 - Present summary of study data and draw weight-evidence conclusions
 - REACH dossiers
 - Peerreviewed literature????
 - OECD summaries

Approach for Data Poor Chemicals

- Toxicity of a known (data-rich) chemical, called a "surrogate" or "analogue," is "read across" to a new (data-poor) chemical
 - Share key structural features
 - Common metabolite
- Guidance documents, tools
- If data based on a similar substance, can be noted on SDS

Case Study: Read-Across

Example 1: Use of Read-Across Assessment

Issue: Limited CAS-specific data

Chemical of Interest: Benzyl hexadecyl dimethyl ammonium chloride

	Chemical of Interest	Chemical of Interest + Read-Across*
Hazard Conclusion	Acute Toxicity 4 Oral (H302); Skin Irritant 2 (H315)	Aquatic Acute 1 (H400); Aquatic Chronic 1 (H410); Acute Toxicity 4 Oral (H302); Acute Toxicity 3 Dermal (H311); Acute Toxicity 2 Inhalation (H330); Skin Irritant 1B (H314); Eye Irritant 1 (H318); STOT SE 3 (H335)
Rationale	No CAS-specific test data; Limited descriptions of toxicity	Test data in humans and animals; regulatory classifications (NZ)
Reference(s)	RTECS, TSCATS	REACH Dossier; LOLI Database; US EPA HPV; peer-reviewed literature

*Benzyl C12-C16-alkyl dimethyl ammonium chlorides

Take Home: If chemical-specific data are limited, use similar substances to inform the toxicity of the chemical of interest.

Approach for Medium Data Chemicals: Animal Data Summary

- Summary by endpoint:
 - Study design, note if guideline study
 - Species tested
 - Study duration
 - All doses and exposure routes
 - No observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL)
 - References
 - If a website undergoes updates, save PDF at time of assessment

Anatomy of a "Gold Standard" Weigbf-Evidence Statement

Weight-of-Evidence Statements:

- If only one or several studies were used
- If the data are based on the compound of interest (COI) or a surrogate (and name of surrogate[s] if applicable)
- If the studies were conducted according to established guidelines
- Specific justification why a conclusion was reached if data are inconsistent
- Conclusions reached by other authoritative agencies

"Weight of evidence"
(WoE)is the process of assembling, evaluating, and integrating all available scientific information to make a robust conclusion about a chemical hazard or risk

Example Hazard Assessment

Reproductive Toxicity (Including Developmental Toxicity

Weight of Evidence: Based on the results of a reproductive/developmental screening study and of developmentaesinxicats, studi Chemical X is considered to pose a clear developmental hazainhplaosation loss was the critical adverse effect. ketheuideline study the fetal LOAEL was 10 mgday, and no NOAEL was identified

In a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and a reproductive/developmental toxicity study (OECD 421), which is a reproductive and a reproductive administered 10, 50, and a reproductive administered 10, (CAS No. XXXX) viaoral gavage for up to 53 days in dams. Clinical signs were observed in dams at 200-day/k@ody weight gain was less fortbo males and females at 200 mg/kday. At 200mg/kg-day, postimplantation loss was 100%. At 50g/kg-day, there was an increase the number of stillborn births. There was also elevated abnormalities in pups at 10 and 6/0g-day. Since effects on the pups occurred at doses lotten where maternal toxicity occurred, these effects were considered adverse (ECHA, 2025). The parental LOAELs and NOAELs were 2000 amout 150 mg/kg-day, respectively; the fetal LOAEL was 10 mg/dkay. No NOAEL was identified.

In a nonguideline study, female Sprague awley rats were exposed to Chemical/Moral gavage at concentrations of 0, 20, 40 or 80 mg/day during gestation days 619. The mean maternal adjusted body weight of the highese group was reduced in comparison to controls. There as a marked increase in the number of early responding and a corresponding increase in the number of-propriantation losses in the highdose group. An increase in the number of fetuses and litters with unossified sternebrae was noted in the-rained high-dose group compared to controls. Based these findings, a developmental NOAEL of 20 mg/kgbay and LOAEL of 40 mg/kgbay was identified based on unossified sternebrae in the absence eftomaterial toxicity (US EPA, 2007).

The classification is further supported by GHS classifications as a Cate Reproductive Toxicant in Australia, EU, Japan, Klealand, and Taiwan.

References:

European Chemicals Agency (ECHA). 2025. "REACH dossier for Chemical X (CAXXXX)."XXXcessed on April 06, 2025, at https://echa.europa.eu/cs/registrationdossier//registered-dossier/X.

United States Environmental Protection Agency, 2007. "Screening Level Evaluation of High Production Volume Chemicals! Chemical

Example Weight of Evidence

Reproductive Toxicity (Including Developmental Toxicity)

Weight of Evidence: Based on the results of a reproductive/developmental screening study and of developmental toxicity studies in rats, chemical X is considered to pose a developmental hazard. Posimplantation loss was the critical adverse effect. In the key guideline study, the fetal LOAEL was 10 mg/ktay, and no NOAEL was identified.

Example Detailed Support

Reproductive Toxicity (Including Developmental Toxicity)

In a reproductive/developmental toxicity study (OECD 421), Wistar rats (n = 10/sex/dose) were administered 10, 50, and 200 and f the chemical X (CAS No. XXXXX) *via* oral gavage for up to 53 days in dams. Clinical signs were observed in dams at 200-**rday/**kgBody weight gain was less for both males and females at 200 mg/kg. At 200mg/kg-day, postimplantation loss was 100%. At 500g/kgday, there was an increase in the number of stillborn births. There was also elevated abnormalities in pups at 10mag/ltg5/0lay. Since effects on the pups occurred at doses lower than where maternal toxicity occurred, these effects were considered adverse (126). The parental LOAELs and NOAELs were 200 mg/kggand 50 mg/kgday, respectively; the fetal LOAEL was 10 mg/kggy. No NOAEL was identified.

In a nonguideline study, female Spragueawley rats were exposed to chemical manage at concentrations of 0, 20, 40 or 80 mg/kg-day during gestation days 69. The mean maternal adjusted body weight of the highse group was reduced in comparison to controls. There was a marked increase in the number of early resorptions and a corresponding increase in the number of post implantation losses in the highdose group. An increase in the number of fetuses and litters with unossified sternebrae west in the mid- and high-dose group compared to controls. Based on these findings, a developmental NOAEL of 20-rotaly/kand LOAEL of 40 mg/kg-day were identified based on unossified sternebrae in the absence of overt material toxicity (US EPA, 2007).

The classification is further supported by GHS classifications as a Categorproductive Toxicant in Australia, EU, Japany Mealand, and Taiwan.

Example References

Reproductive Toxicity (Including Developmental Toxicity)

References:

European Chemicals Agency (ECHA). 2025. "REACH dossier for Chemical X (CASXMX)XXXcessed on April 06, 202 at https://echa.europa.eu/cs/registrationdossier//registered-dossier/X.

United States Environmental Protection Agency (US EPA). 2007. "Screening Level Evaluation of High Production V Chemicals: Chemical X."

Keeping Up with Emerging Toxicity Information

- Many programs available for keeping up with regulations
- New authoritative assessments
 - EFSA, SCCS, TSCA priority assessments
- Peer-reviewed literature
- Dossiers and Public Activities Coordination Tool (PACT)

Emerging Toxicity Information

PACT - Public Activities Coordination Tool

The public activities coordination tool (PACT) provides an overview of the substance-specific activities that authorities are working on under REACH and the CLP Regulation. These activities are being carried out in line with ECHA's Integrated Regulatory Strategy.

PACT provides up-to-date information on the activities planned, ongoing or completed by ECHA and/or MSCAs for a given substance in the following areas:

- Data generation and assessment dossier evaluation, substance evaluation, informal hazard assessment (PBT/vPvB/ED).
- Assessment of regulatory needs (ARN).
- Regulatory risk management harmonised classification and labelling (CLH), SVHC identification, recommendations for inclusion in the Authorisation List, restriction.

A summary of all the substance-specific activities can be found under 'Details' for each entry.

Conduct Vulnerability Assessment

Recent Regulatory Developments in the EU: New CLP Hazard Classes

* * * * * * *

- Regulation (EC) No 1272/2008 on CLP of substances and mixtures
- New hazard classes proposed in 2022
 - Endocrine-Human Health & Environment
 - PBT/vPvB and PMT/vPvM
- Final guidance November 2024
- Transition period for reclassification and labelling of substances and mixtures
- CLP anticipated to become a key regulatory driver for evaluating endocrine disruption (ED) in the coming years

Substances

Mixtures

Source: ECHA (2028)tps://echa.europa.eu/newhazard-classes2023

New mixtures on the market: new classification and labelling man

Evaluating Your Ingredient Portfolio

- Impact to regulated community could be substantial
- Evaluate portfolio by relying on:
 - Draft CLP guidance
 - EFSA/ECHA guidance for BP and PPP
 - OECD Conceptual Framework for EDs
- REACH testing requirements not promulgated yet
 - But there is a self classification template in IUCLID

Guidance on the Application of the CLP Criteria

Part 1: General Principles for Classification and Labelling

GUIDANCE

ADOPTED (ECHA): 5 June 2018 ADOPTED (EFSA): 5 June 2018

doi: 10.2903/j.efsa.2018.5311

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009

European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC)

Evaluating Your Ingredient Portfolio for ED

Compare to Existing ED Lists

STEP 1

STEP 2

STEP 3

STEP 4

- Certain EU ED assessments are adequate to classify under CLP
 - ED under BP/PPP procedures → Assigned ED HH 1 and ED ENV1 in CLP
 - SVHC for ED under REACH → Assigned ED HH 1 and ED ENV 1 in CLP
- Other screening lists
 - ECHA's ED Assessment list (https://echa.europa.eu/ed-assessment)
 - Candidate list of SVHC for ED under REACH (https://www.echa.europa.eu/candidate-list-table)
 - ED lists (https://edlists.org/the-ed-lists)
 - UNEP lists (https://wedocs.unep.org/bitstream/handle/20.500.11822/25633/EDC_report1.pdf?sequence=1&isAllowed=y)
 - ChemSec SIN list (https://sinlist.chemsec.org/endocrine-disruptors/)
 - Japan SPEED '98 list (https://www.env.go.jp/en/chemi/ed/speed98/sp98t3.html)
 - TEDX list (https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list)

Evaluate Existing Endocrine Adversity Data (Human Health)

STEP 2

OECD Leve	el Test/Data Type	Example Endpoints
Level 3	Uterotrophic bioassay in rodentsHershberger bioassay (H assay)	I INVIOUME ISTEM ENGINOINTS I
Level 4	 28/9@day repeated dose study Reproduction/developmental tox screening test Combined chronic toxicity and carcinogenicity studies 	 Changes in sperm parameters: sperm numbers, sperm morphology Histopathologic changes in the above organs and glands Serum T4, T3 decreased, TSH increased; histopin in thyroid gland
Level 5	Extended-generation reproductive toxicity study Twogeneration reproduction toxic	/e Litter size, sex ratio (F1, F2), litter/pup weight, pu index, abnormalities in pup development ci t y/ stւ տֆenital distance

OECD Series on Testing and Assessment

Revised Guidance Document 150 on Standardised **Test Guidelines for Evaluating Chemicals for Endocrine** Disruption

Evaluate Endocrine Activity (Human Health and Environment)

STEP 1

STEP 2

STEP 3

STEP 4

Activity Assessment

OECD Level	Test/ Data Type	Example Information	
Level 1	Existing data an nortest informatio	 Physical and chemical propert All available (eco)toxicological (non) standardized tests Readcross, chemical categorie QSARs, iand/ipoediction Scientific literature 	data fror
Level 2	(mammalian and r	 ER/AR binding and transactive Steroidogeniesitiro onAromatase assay dsThyroid disruption assays Highthroughput screens 	ation assa

Primary Data Sources

- US EPA's ToxCast
- US EPA's Collaborative Estrogen Receptor
 Activity Prediction Project (CERAPP)
 - US EPA's Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA)
- QSAR DataBank (QsarDB)
 - Danish (Quantitative) StructureActivity Relationship [(Q)SAR] Database

Evaluate Biological Plausibility

STEP 1

STEP 2

STEP 3

STEP 4

- Evaluate biological plausibility only for keyingredients
 - Can be a significant effort
 - Requires expert judgment
 - Relies on modeof-action and weight-ofevidence approach
 - Analogy, essentiality, consistency, specificity, temporal concordance

Source: ECHA (2011/)icrosoft Word-CLP_Guidance_ED_revised_with_headings.docx (europa.eu)

TRa binding

Take Homes

- Conducting accurate hazard assessments is essential for compliance, safety, and general stewardship
- Ahazard assessment you can stand by can be difficult and resource intensive
- Many resources out there for getting toxicity information to inform assessment
- Proper documentation is key
- Toxicity information is evolving, and periodic updates are important
- New CLP hazard classes may pose unique challenges

Thank You!

Ari S. Lewis, M.S.

Principal

Scott Sieber, M.S.

Senior Product Safety Toxicologis

Ari.Lewis@gradientcorp.com (617) 395-5526

scott.sieber@gmail.com (740) 6070577

